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Abstract—This paper presents Adaptive Whole-body Loco-
Manipulation, AdaptManip, a fully autonomous framework for
humanoid robots to perform integrated navigation, object lifting,
and delivery. Unlike prior imitation learning-based approaches
that rely on human demonstrations and are often brittle to dis-
turbances, AdaptManip aims to train a robust loco-manipulation
policy via reinforcement learning without human demonstrations
or teleoperation data. The proposed framework consists of three
coupled components: (1) a recurrent object state estimator that
tracks the manipulated object in real time under limited field-
of-view and occlusions; (2) a whole-body base policy for robust
locomotion with residual manipulation control for stable object
lifting and delivery; and (3) a LiDAR-based robot global position
estimator that provides drift-robust localization. All components
are trained in simulation using reinforcement learning and
deployed on real hardware in a zero-shot manner. Experimental
results show that AdaptManip significantly outperforms base-
line methods, including imitation learning-based approaches,
in adaptability and overall success rate, while accurate object
state estimation improves manipulation performance even under
occlusion. We further demonstrate fully autonomous real-world
navigation, object lifting, and delivery on a humanoid robot.

Index Terms—Humanoid, Learning-based whole-body loco
manipulation, State estimation

I. INTRODUCTION

Humanoid robots are a promising platform for human-
centric environments due to their ability to execute human-like
whole-body capabilities [1], [2]. However, achieving reliable
whole-body loco-manipulation on humanoids remains funda-
mentally challenging. Such tasks require the robot to simul-
taneously coordinate high-dimensional whole-body dynamics,
maintain balance under changing contact conditions, and reg-
ulate complex multi-contact interactions with external objects.
While recent work [3], [4], [5], [6] has enabled dynamic
whole-body skills such as jumping and parkour, autonomous
contact-rich humanoid whole-body loco manipulation remains
largely unsolved.

To address these challenges, recent advances in imitation
learning—Ileveraging motion capture demonstrations, teleop-
eration, and large-scale human video datasets—have emerged
as a powerful paradigm for learning whole-body humanoid
control, which offers an alternative to traditional model-based
approaches [6], [7], [8], [9]. While such methods have shown
strong performance, they rely heavily on motion capture sys-
tems and curated demonstrations that provide privileged global
robot and object state information [10], [3], [4], [5]. Moreover,
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Fig. 1: Fully autonomous humanoid loco-manipulation using online
recurrent state estimation. (1) navigating toward the object, (2) lifting the
object through coordinated whole-body motion, and (3) delivering the object
to the target location. Our method relies solely on onboard sensing and does
not require teleoperation data or an external mocap system.

recovery and adaptability under natural failure cases, such as
object slippage or drops, remain underexplored because these
methods tend to follow the fixed reference motion for the given
time window.

Our key insight for robust and adaptive loco-manipulation is
to jointly learn online object state estimation and control by
training a recurrent state estimator alongside reinforcement
learning that encounters and adapts to failure cases. This
formulation tightly couples perception and control, and allows
the humanoid to continuously reason about object pose and
contact evolution without relying on privileged global infor-
mation or pre-recorded demonstrations. By integrating object
state estimation into training, the robot naturally learns to
adjust its whole-body coordination when interactions deviate
from nominal execution, such as during object slippage or
partial loss of contact. Inspired by human behavior, our de-
sign leverages complementary sensing modalities—vision and
proprioception—to enable robust state inference even when
visual observations are partial or occluded.

Motivated by this insight, we propose AdaptManip, a
learning-based framework for whole-body humanoid loco-
manipulation that jointly integrates online object state estima-
tion and control to enable fully autonomous navigation, lifting,
and delivery using only onboard sensing. By coupling multi-
modal object state estimation from vision and proprioception
with LiDAR-based robot pose odometry, AdaptManip achieves
robust and recovery-capable loco-manipulation—including re-



TABLE I: Comparison of representative methods across key aspects: onboard-
only sensing (Onbd), absence of human demonstrations (NoHumRef), lo-
comotion—manipulation capability (LocoMan), absence of future references
(NoFutRef), and no teleoperation (NoTeleOp).

Method Onbd NoHumRef LocoMan NoFutRef NoTeleOp
TWIST [7] X X

ResMimic [4] X X

VisualMimic [3] X X
HDMI [10] X X

PhysHSI [11] X X

OmniRetarget [5] X X

GMT [6] X X

BoxLocoManip [12] X
Ours

grasping after object drops—without relying on motion cap-
ture systems or teleoperation. See Table I for a qualitative
comparison to existing methods. To realize these capabilities,
our framework integrates three key components into a uni-
fied system: (1) a reinforcement learning-based locomotion
policy for stable bipedal mobility, (2) a residual upper-body
manipulation policy for contact-rich object interaction, and (3)
a fully onboard object state estimator that provides real-time
perception for control. Concretely, the robot operates through
three coordinated stages: navigation, lifting, and delivery.
During the navigation stage, the humanoid approaches the
target object using LiDAR-based robot pose odometry and
proprioceptive feedback, enabling fully onboard localization.
In the lifting stage, an online object state estimator guides
grasping and coordinated whole-body manipulation. In the
delivery stage, the robot transports the object to the target
location while maintaining balance under changing contact
conditions. Overall, AdaptManip achieves higher task success
rates than prior baselines by learning robust and adaptive
behaviors through reinforcement learning, including recovery
actions under failure conditions. This is realized in a fully
autonomous system through the integration of onboard sensing
and recurrent state estimation.

We summarize our key contributions as follows. First, we
introduce AdaptManip, a learning-based framework for whole-
body humanoid loco-manipulation that autonomously accom-
plishes navigation, lifting, and delivery through a structured
three-stage strategy. Second, we develop an online, recurrent
object state estimation module that fuses LiDAR, vision, and
proprioceptive sensing, enabling robust and recovery-capable
loco-manipulation using only onboard sensors, without tele-
operation data or external motion capture systems. Finally, we
validate the effectiveness of AdaptManip through extensive
simulation studies and real-world experiments on physical
humanoid hardware.

II. RELATED WORK
A. Humanoid Whole-Body Control

Over the past decades, model-based control, such as Model
Predictive Control, has advanced significantly across a wide
range of humanoid platforms, including quadrupedal, bipedal,
and wheeled robots [13], [14], [15], [16]. These approaches
are typically developed through hierarchical and decomposed
control architectures that separate trajectory planning and

whole-body control, often integrating model-based predictive
optimization at different levels and time scales [17], [18], [19].
A key advantage of this paradigm is its reliance on physics-
based models, which provide strong interpretability, stability
guarantees, and smooth, dynamics-aware continuous control
actions. However, the performance is inherently sensitive to
assumptions and often requires manual human effort to model
accurate loco-manipulation behaviors.

In light of these challenges, learning-based methods —par-
ticularly reinforcement learning (RL)— have become increas-
ingly influential in humanoid robotics, supporting the syn-
thesis of complex whole-body behaviors [20]. End-to-end
RL approaches, often augmented with domain randomization,
have shown encouraging sim-to-real transfer and demonstrated
successful deployment on hardware platforms [21], [22], [23],
[24], [25]. However, reliable and fully autonomous object-
centric whole-body manipulation remains challenging, as
physical interaction with diverse objects entails complex, task-
dependent dynamics that are difficult to model and generalize.

B. Learning Humanoid Loco-Manipulation

Learning-based methods have recently advanced from iso-
lated locomotion and manipulation to integrated whole-body
humanoid loco-manipulation [9], [6], [26], [27]. This progress
has been accelerated by the availability of large-scale open-
source motion datasets (e.g., AMASS [28] and LAFANI1 [29]),
together with advances in imitation learning, which enable
humanoid robots to reproduce natural human motions such
as jumping, running, dancing, and kicking [6], [26], [30],
[27], [31]. Despite these successes, existing imitation-based
humanoid controllers largely emphasize kinematic motion
reproduction, with limited ability to handle object contacts and
interaction dynamics.

Recent works have begun to address object-centric whole-
body humanoid loco-manipulation, where robots must jointly
reason about physical interaction with objects. Existing ap-
proaches explore this problem using motion imitation with
external tracking [10], [4], vision-based reinforcement learning
[3], or hybrid perception pipelines combining long-range sens-
ing and close-range visual feedback [11]. While these methods
demonstrate promising results on tasks such as box lifting,
many rely on strong assumptions, including motion capture
supervision, human-in-the-loop navigation or skill transitions
[12], and continuous visual access to the target object. Unlike
existing works, our approach relies solely on fully onboard
sensing and enables fully autonomous, robust, and adaptive
whole-body behaviors to accomplish contact-rich manipulation
tasks.

C. Object State Estimation

Accurate perception and state estimation are critical compo-
nents of humanoid loco-manipulation. Motion capture systems
are commonly used to obtain accurate global robot and object
poses in laboratory environments [10], [4]. However, such
systems are inherently restricted to controlled environments
and are impractical for deployment beyond the lab. Visual
pose estimation offers a more flexible alternative, either



through fiducial markers [32] or direct pixel-based methods
[33], enabling operation in less structured settings. Despite
their effectiveness, vision-based approaches typically require
continuous and reliable visual observations, making them
vulnerable to failures caused by occlusions, limited view frus-
tums, or dynamic viewpoints during whole-body motion. To
address these limitations, we rely exclusively on fully onboard
sensing—camera, LiDAR, and robot proprioception—to, sim-
ilar to [34], recurrently estimate object state, robot—object
contact forces, and the robot’s global pose, and deploy the
resulting system directly on hardware for fully autonomous
loco-manipulation.

III. TASK DESCRIPTION

To robustly complete our whole-body loco-manipulation
tasks, we decompose it into three stages: (1) moving the robot
from an initial pose to the box, (2) grasping and lifting the
box, and (3) transporting it to the target location. Each stage
is designed to address the distinct requirements (Fig. 2).
Navigation. In the first stage, the humanoid navigates from
its initial location to a goal location in front of the target
object, which is given as input. Therefore, this stage requires
locomotion rather than object manipulation skills. Because the
object is initially outside the camera’s field of view, the relative
object location is estimated using LiDAR-inertial odometry
based on the onboard LiDAR sensor, implemented with FAST-
LIO [35].

Grasping and Lifting. When the robot approaches sufficiently
close to the object (< 0.5m), it transitions to the second
stage to grasp and lift the target object. The robot employs
unarticulated rubber hands; therefore, the object is supported
purely through frictional contact rather than form closure. In
this phase, vision-based sensing is activated to refine the object
pose for accurate grasping and lifting. We implement the
vision-based sensing using an AprilTag [32], although it can
be replaced with any vision-based 6D object pose estimator.
An effective policy for this stage must be robust to inaccurate
or unavailable 6D object pose information.

Carrying to Destination. Once the object is securely lifted,
the system transitions to the third stage, which involves
transporting the object from its initial location to the target
location. During this phase, the object is frequently occluded
by the robot’s body and hands and visual information becomes
unreliable.

IV. LEARNING LOCO-MANIPULATION
WITH RECURRENT STATE ESTIMATION

We present a learning-based humanoid loco-manipulation
policy with a recurrent object state estimator to enable robust
object grasping, lifting, and delivery under unreliable visual
observations. The proposed policy allows a humanoid robot
to adaptively manipulate an object by integrating onboard
visual and proprioceptive information. However, learning such
a policy is inherently difficult, as humanoid loco-manipulation
requires simultaneously maintaining stable bipedal locomo-
tion, interpreting noisy and intermittent visual inputs, and
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Fig. 2: Three-stage AdaptManip experiment plan and deployment.
Stage 1: LIDAR odometry and proprioception enable autonomous navigation.
Stage 2: Recurrent multimodal object-pose estimation supports coordinated
lifting. Stage 3: Image-based refinement and residual policies ensure stable
delivery. All stages operate using only onboard sensing.

executing adaptive whole-body manipulation under contact-
rich interactions. This challenge substantially increases the
complexity of policy learning and reduces the effectiveness
of a naive end-to-end approach.

To address these challenges, we structure the learning pro-
cess into three components. First, we train a base whole-body
locomotion policy that provides stable and periodic bipedal
walking. Then, we learn a whole-body residual manipulation
policy on top of the base policy, which enables adaptive
object grasping and lifting while preserving locomotion sta-
bility. Concurrently, we train a recurrent object state estimator
that fuses visual observations and proprioceptive signals to
infer the object pose online, which aims to achieve robust
manipulation under partial or missing visual inputs, similar to
[13]. The details of each stage are described in the following
subsections.

A. Base Whole-Body Locomotion Policy

For robust whole-body walking, we train a base locomotion
policy using RL to generate stable bipedal locomotion across
a range of commanded velocities. This policy serves as a fixed
foundation for subsequent whole-body manipulation learning.
Observation and Action Space. We employ an asymmetric
actor—critic architecture during training. The actor observation
at time ¢ is defined as

O;lCtOl’ = |:0j7 0]‘, w, gproja \_/, @27 h, ag—1 |,

where 6; € R* and éj € R?? denote the joint positions
and velocities, w € R? is the base angular velocity, gpro5 €
R3 is the gravity vector projected into the torso frame, v =
[0;,7,]7 € R? denotes the commanded planar velocity of
the base, w € R is the commanded base yaw rate, heR
is the commanded base height, and a;_; € R29 denotes the
action applied at the previous timestep. The critic receives the
same observations as the actor, augmented with the base linear
velocity v; € R3, and is provided with a three-step temporal
history of all inputs, i.e., of1¢ = [0¥%F | v; o, ].

The actions for the policy, a; € R?°, are joint-
space position targets relative to a default configuration
which are mapped to joint torques via a PD controller,

Tt = kp((at + Qdet) — Qt) — kaq;.
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Fig. 3: Overview of the training and deployment pipeline. (1) A base whole-body control policy 7y, is trained in IsaacLab to generate base whole-body
behavior such as walking. (2) A manipulation residual policy 7res is trained on top of the base policy, taking proprioception and the estimated object state
Xpox to produce residual actions Aat. The residual action aims to adaptively lift a 3D object. (3) A recurrent online object state estimator fuses vision and
proprioceptive cues using a V-LSTM and MLP to infer X}, and is trained jointly with the residual manipulation policy. During real-world deployment, the
robot uses onboard estimators and LiDAR odometry and executes the combined policies 7ype and 7res to complete the whole-body loco-manipulation task.

Reward Design. The locomotion reward follows a weighted
structure consisting of command tracking, gait shaping, motion
regularization, and constraint violation penalties, as summa-
rized in Eq. (1), following prior work [36].
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Here, v, w, and z denote the base linear velocity, angular
velocity, and height, with corresponding commands v, @, and
z. The index j denotes joints and f denotes feet. Terms 7, w;,
and w; are joint torque, velocity, and acceleration, while a; is
the policy action.a; and a; denote the first- and second-order
finite differences of actions. vy and f. are the foot velocity and
contact force, ¢y is the foot air-time, and zy is the foot height.
gp denotes the gravity vector projected onto the body frame.
w, and T, indicate joint velocity and torque limit violations.
I is an indicator function for foot contact.

B. Whole-Body Residual Manipulation Policy

For whole-body loco-manipulation, we train a residual
policy on top of the frozen base policy. This residual policy

learns task-specific adaptations for object grasping, lifting, and
stabilization.
Observation and Action Space. The actor receives

O%Ctor = 0]', 0]'7 W, Zproj, Xbox; Xboxa at71i| )
which includes the same proprioceptive state as the base
locomotion policy (joint positions €, velocities éj, base
angular velocity w, and projected gravity gpr0j), augmented
with the estimated 6D box pose Xbox, the commanded box
pose Xpox, and the previous action a;_j. As in the locomotion
controller, we employ an asymmetric actor—critic architecture.
The critic augments the actor observations with privileged
information:

critic __ | .actor priv
oy = [0t72:t’ Oi_2:¢| >

where o} denotes privileged information available only dur-
ing training, including the ground-truth 6D pose Xy, the
linear velocity vy,.x, the angular velocity wyox, as well as hand
and box contact forces f},,q and f,ox.

The action space consists of two components. First, the
command vector provided to the frozen low-level locomotion
policy i8 Tioco = [Ty, Uy, W, i_L] € R*, which corresponds to the
base motion and height commands defined in (IV-A). These
commands regulate planar locomotion, including forward and
lateral motion, turning, and base height control. Second, the
upper-body action aypper € R'7 corresponds to residual PD
joint position targets for the upper body, primarily affecting
the waist and arm joints.

Reward Design. We use the locomotion reward 7o, defined
in Eq. (1) and augment it with manipulation-specific objectives
for robust bimanual grasping and stable box transport. Beyond
the base locomotion reward in Eq. (1), the proposed reward



introduces additional manipulation-specific objectives that ex-
plicitly account for physical interaction with the object during
bimanual grasping and transport. In particular, the contact-
related terms penalize excessive relative motion between the
robot and the box, encourage symmetric bimanual contact
forces, reward proper hand-box contact orientation, penalize
failures to establish contact, and discourage tangential hand
motion indicative of slipping:

T = Tloco
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Terminal Condition. Episodes terminate after 20 seconds, if
the robot tilts more than 60°, if the root height drops below
0.15m, or if the box falls below 0.25m.

C. Recurrent Object State Estimation

Accurate and robust object state estimation is essential for
whole-body loco-manipulation, as manipulation performance
directly depends on reliable object pose information. Although
motion capture systems provide accurate measurements, they
are restricted to laboratory settings, making vision-based per-
ception essential for real-world operation. In this work, we
employ a robust tag-based visual pose estimator [32]; however,
visual observations are often incomplete or intermittent due to
occlusions, limited camera field of view, and object motion
during manipulation. Enforcing constant object visibility to
mitigate these issues can induce unnatural behaviors.

We propose an online object state estimation approach that
fuses visual observations with proprioceptive measurements
and executed actions. The estimator follows a human-inspired
strategy, using vision primarily for grasp initiation and main-
taining the object state through proprioception during manip-
ulation. By leveraging proprioceptive and action histories, the
estimator remains reliable under partial or intermittent visual
feedback.

We employ a recurrent object state estimator to infer the
relative object pose Xpox online during manipulation. The
estimator takes as input the current vision-based pose measure-
ment (set to zero when unavailable), robot proprioceptive ob-
servations, and the executed action, and outputs the estimated
6D pose in the robot frame. We implement the estimator using
an LSTM with an MLP output head, as its internal memory
enables robust state propagation under missing or unreliable
visual observations.

The estimator is trained concurrently with the manipulation
policy using supervised learning with the ground-truth object

Parameter Range Operation
Base Mass [kg] [-2.5, 2.5] Add

kp [ 0.8, 1.2] Scale

kq [ 0.8, 1.2] Scale
Ground Static Friction [ 0.3, 1.5] Absolute
Ground Dynamic Friction [0.3,0.9] Absolute
Base Force Disturbance [N] [-4.0, 4.0] Absolute
Base Torque Disturbance [Nm]  [-2.0, 2.0] Absolute
Table Static Friction [ 0.3, 1.3] Absolute
Table Dynamic Friction [ 0.3, 1.5] Absolute
Table Restitution [ 0.0, 0.5] Absolute
Box Static Friction [ 0.3, 1.3] Absolute
Box Dynamic Friction [ 0.3, 1.5] Absolute
Box Restitution [ 0.0, 0.5] Absolute
Box Mass [kg] [-0.88, 1.5] Add
Box Scale x [ 0.75, 1.25]  Scale
Box Scale y [ 0.75, 1.25]  Scale
Box Center of Mass « [ 0.75, 1.25] Add
Box Center of Mass y [ 0.75, 1.25] Add
Box Center of Mass z [ 0.75, 1.25] Add

TABLE II: Domain randomization parameters for policy training.

poses available in simulation. To stabilize early training, we
apply a curriculum that gradually replaces the ground-truth
pose with the estimated pose in the policy input. Specifically,
the pose provided to the policy is defined as

Xip = w Xbox + (]- - w) Xbom (3)

where the weighting factor is given by w = min(¢/7T, 1) with
t denoting the current training iteration and 7' the maximum
iteration.

To improve training efficiency, we do not directly incorpo-
rate visual inputs during RL training. Instead, we provide the
policy with a noisy and randomly masked ground-truth object
pose to model visual estimation errors and occlusions, which
transfers robustly to real hardware.

D. Domain Randomization

We employ domain randomization [37] during training to
improve robustness and sim-to-real transfer by randomizing
physical and control parameters, including base mass, ground
friction, PD gains, and external disturbances (see Table II). For
whole-body manipulation, we further introduce grasp-specific
randomizations, such as box—table friction and restitution, box
mass, scale, and center-of-mass location. Observation noise is
injected for both the locomotion and manipulation policies to
enhance robustness.

V. EXPERIMENTAL RESULTS

In this section, we design simulation and hardware ex-
periments to address the following research questions: (1)
Can the proposed method manipulate objects more robustly
compared to the baselines? (2) Can the learned object state
estimator provide accurate pose estimates? (3) Can our policy
be effectively transferred to a real humanoid robot?

A. Implementation Details and Experimental Setup

1) Training Details: All policies are trained using
PPO [38], augmented with a bilateral symmetry loss [39].
The base locomotion and whole-body manipulation policies



are trained separately, each for approximately one day on a
single NVIDIA RTX 4090 GPU. The actor and critic are three-
layer MLPs with hidden dimensions [512, 256, 128] and ELU
activations. A recurrent object state estimator, implemented as
an LSTM with a hidden dimension of 128, is trained jointly
with the policy.

2) Simulation Setup: We conduct simulation experiments
using two physics engines, IsaacLab [40] and MuJoCo [41],
to enable cross-simulator validation. All experiments use a
control frequency of 50 Hz, with the physics simulation run-
ning at 200 Hz. Policies are trained in IsaacLab and evaluated
in MuJoCo without additional fine-tuning.

3) Hardware Setup: For real-world evaluation, we deploy
on a Unitree G1 humanoid robot [42]. The robot is equipped
with an Intel RealSense D435i RGB-D camera [43] and a
Livox Mid-360 LiDAR [44]. All sensing and control are per-
formed onboard, without reliance on external motion capture
systems. Using a single AprilTag [32] placed at the center
of the top surface of the box, we perform visual object
pose estimation using the official Python bindings [45]. The
policy is deployed on hardware without additional tuning
following sim-to-sim validation, demonstrating effective sim-
to-real transfer.

B. Simulation Experiments

We first conducted comprehensive simulation experiments
to demonstrate the effectiveness of AdaptManip, and compared
it against the following baselines.

e Pure RL. The policy is trained with RL with the ground-
truth 6D object pose, which corresponds to removing the
estimator from our framework.

e Pure RL + FK. In addition to Pure RL, the policy is
provided with the hand positions computed via forward
kinematics, providing additional context.

o Imitation Learning (IL). The policy follows a prede-
fined grasping motion, similar to recent motion-based
methods [46].

o AdaptManip (Ours). Our full method combines an RL-
based manipulation policy with a recurrent object state
estimator.

e Oracle. The policy is identical to Pure RL but is given
perfect ground-truth object state information at test time,
providing an upper bound on achievable performance.

All policies were trained in IsaacLab without using vision,
since training with visual inputs is computationally expensive
and typically leads to weaker sim-to-real generalization. Dur-
ing evaluation, the object pose was obtained via an AprilTag
in both IsaacL.ab and MuJoCo except for Oracle. MuJoCo
was severed as an unseen simulator to perform sim-to-sim
transfer evaluation and assess generalization beyond the train-
ing environment. We decomposed the task into three stages:
navigation, grasping, and carrying, as illustrated in Fig. 2, and
analyzed the results individually.

Overall, our results showed that AdaptManip not only
achieved competitive performance in IsaacLab (the training
environment) but also outperformed the baselines in the unseen
MuJoCo environment (Table IIT). In IsaacLab, AdaptManip

TABLE III: Performance comparison between our method and the GT-Pose
Oracle baseline in the no-occlusion setting across 135 trials in MuJoCo and
IsaacLab.

Method Whole Stagel Stage2 Drops (1)  Regrasps (1)
IsaacLab
Pure RL 0.62 (+0.48) 098 (x0.14)  0.88 (+0.32)  1.79 (+2.39) 5.74 (+3.91)
Pure RL + FK 0.88 (+0.32)  0.93 (025  0.92(x0.27)  0.29 (+0.89) 2.94 (+1.88)
Imitation Learning (IL)  0.42 (z0.46) 096 (x0.19)  0.93 (+0.18)  3.81 (x4.77) 2.94 (£1.99)
AdaptManip (Ours) 0.85 (£0.35)  0.97 (x0.17)  0.92 (+0.26)  0.49 (+1.14) 2.12 (£1.95)
Oracle 091 (+0.28)  0.98 (=0.14)  0.97 (+0.15)  0.46 (+1.16) 2.47 (£1.48)
MuJoCo
Pure RL 0.37 (£0.48)  0.84 (=0.36)  0.80 (+0.40)  2.11 (=1.01) 4.20 (+3.78)
Pure RL + FK 0.61 (£0.49)  0.95 (x0.22) 093 (+0.26)  2.44 (+1.29) 5.24 (+4.53)
Imitation Learning (IL) ~ 0.00 (x0.00)  0.93 (x0.26)  0.69 (£0.46)  0.82 (x0.44) 1.78 (+0.93)
AdaptManip (Ours) 0.75 (£0.43)  0.90 (0.30)  0.88 (x0.32)  1.94 (20.68) 6.32 (£3.95)
Oracle 0.79 (+0.41) 098 (x0.12)  0.97 (x0.16)  2.16 (+1.01) 6.37 (+4.94)
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Fig. 4: State estimation error of our method. Shows mean + 1 standard
deviation across 50 episodes. The green region shows the area where vision is
available, and the purple region shows the area where there is contact between
the robot and box.

achieved an 85% success rate, which was comparable to Pure
RL + FK and significantly better than Pure RL and the Imita-
tion Learning baseline. Interestingly, Pure RL + FK achieved
a success rate of 88%, substantially outperforming Pure RL
at 62%, which highlighted the importance of informative state
representations in reinforcement learning. In our experiments,
Imitation Learning did not perform effectively, as it lacked
the flexibility required to adapt to diverse interaction scenarios.
Overall, the performance gap among AdaptManip, Pure RL
+ FK, and Oracle was relatively small in this setting, indicat-
ing that all three methods achieved near-optimal performance
when reliable object state information was available.

However, when we evaluated sim-to-sim transfer, the differ-
ences became much more pronounced. AdaptManip achieved
a 75% success rate, which was comparable to the 79% of Or-
acle, while also exhibiting a large number of regrasps (6.32),
indicating its ability to actively recover from grasping failures.
In contrast, Pure RL + FK showed a significantly lower
success rate of 61%, which implied that simply providing
end-effector positions was insufficient, as slippage between the
hands and the object could not be properly captured. The other
two methods, Pure RL and Imitation Learning, demonstrated
relatively lower success rates, due to the lack of reliable object
state information in the unseen environment.

We evaluate our policy on unseen objects in IsaacLab under
a zero-shot setting. The policy achieves comparable perfor-
mance across cylinders with different starting orientations (X-
axis: 82 + 14, Y-axis: 86 + 8, Z-axis: 78 £+ 11), while the
performance is lower on the sphere (51 £21); nevertheless, the
result still indicates encouraging generalization to significantly
different object geometries.



(b) Snapshots illustrating approaching, lifting, and delivery.

Fig. 5: Hardware demonstration of the three-stage whole-body loco-manipulation task.
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(b) Object position estimates from the recurrent estimator and visual detection.

Fig. 6: Hardware demonstration of whole-body loco-manipulation. The yellow region indicates the grasp formation phase where the robot carefully coordinates
its arms for a secure hold, while the red region highlights the robot’s ability to recover from a transient loss of stability through corrective arm motions.

C. Validation of Object State Estimator

We conduct further experiments to validate the effectiveness
of our learned estimator. For this, we collect 50 episodes of
data using our policy under the same randomized conditions
used in Table II. For each episode, we collected the ground
truth pose information of the box and the input observation in-
formation for the estimator, along with flags showing whether
the box was visible in the robot camera frame or whether the
robot was contacting the box.

We supplied this validation data to our estimator and pre-
dicted the pose information. The linear and angular pose errors
are shown in Figure 4. From this, it is clear that initially,
there is a relatively large error which is driven down when
the AprilTag goes within the FOV of the camera. After that,
the error stayed low for the rest of the episode even as the
box was carried around due to the information provided from
proprioception, which works very well as long as the robot
maintains solid contact with the box.

D. Hardware Experiments

Finally, we deploy the learned policy on a real Unitree
G1 humanoid. As shown in Fig. 5, our end-to-end, fully
autonomous policy completes the task using only onboard
sensing and object state estimation. In the grasp formation

phase (yellow; Fig. 6(a)), the robot carefully coordinates
its arms to ensure a secure bimanual grasp before lifting.
After grasping, the hand positions remain nearly fixed. This
indicates that the robot maintains a stable hold while lifting
and transporting the object. Near the later phase of the trial
(red), a transient loss of grasp stability occurs and the robot
recovers the grasp with a small corrective arm motion.

The object position estimates highlight the advantage of
the proposed estimator (see Fig. 6(b)). The visual estimate
degrades when the object leaves the camera field of view
during floating-base motion (e.g., walking). In contrast, our
recurrent estimator continues to track the object. This is
enabled by jointly leveraging robot proprioception and policy
actions, even when visual observations are intermittent.

Overall, these results confirm that our end-to-end policy
transfers effectively to real hardware in a zero-shot manner,
enabling robust whole-body loco-manipulation using only on-
board sensing and object state estimation.

VI. CONCLUSION

This paper presents a novel framework for completing
whole-body, humanoid loco-manipulation tasks. We introduce
AdaptManip, a method which combines multi-modal inputs
of LiDAR, vision, and proprioception to maintain a recurrent



belief of the box pose and hierarchical RL in order to ef-
fectively learn a policy which utilizes the pose for picking
up and carrying a box from an initial position to a target
location. While we show good results for this box lifting task,
interesting future work could include trying more extended
tasks, incorporating additional sensor modalities for better
object state estimation, or using articulated hands for better
manipulation.
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